00:00:00 / 00:00:00

The Tamagawa number formula over function fields

By Dennis Gaitsgory

Appears in collection : Conférences Paris Pékin Tokyo

Let G be a semi-simple and simply connected group and X an algebraic curve. We consider $Bun_G(X)$, the moduli space of G-bundles on X. In their celebrated paper, Atiyah and Bott gave a formula for the cohomology of $Bun_G$, namely $H^_(Bun_G)=Sym(H__(X)\otimes V)$, where V is the space of generators for $H^*_G(pt)$. When we take our ground field to be a finite field, the Atiyah-Bott formula implies the Tamagawa number conjecture for the function field of X. The caveat here is that the A-B proof uses the interpretation of $Bun_G$ as the space of connection forms modulo gauge transformations, and thus only works over complex numbers (but can be extend to any field of characteristic zero). In the talk we will outline an algebro-geometric proof that works over any ground field. As its main geometric ingredient, it uses the fact that the space of rational maps from X to G is homologically contractible. Because of the nature of the latter statement, the proof necessarily uses tools from higher category theory. So, it can be regarded as an example how the latter can be used to prove something concrete: a construction at the level of 2-categories leads to an equality of numbers.

Information about the video

  • Date of recording 17/11/2015
  • Date of publication 09/12/2015
  • Institution IHES
  • Licence CC BY-NC-ND
  • Format MP4

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback