The Quantum SSEP & the emergence of free probability in noisy many-body systems

By Denis Bernard

Appears in collection : Inhomogeneous Random Systems

An alternative title could have been "How to characterise fluctuations in diffusive out-of-equilibrium many-body quantum systems?" In general, the difficulty to characterise non-equilibrium systems lies in the fact that there is no analog of the Boltzmann distribution to describe thermodynamic variables and their fluctuations. Over the last 20 years, however, it was observed that fluctuations of diffusive transport show universal properties that do not depend on the microscopic details. The general framework to characterise these systems from a macroscopic point of view is now called the "Macroscopic Fluctuation Theory". A natural question is whether this framework can be extended to quantum mechanics to describe the statistics of purely quantum mechanical effects such as interference or entanglement in diffusive out-of-equilibrium systems. With this aim in mind, I will introduce the Quantum Symmetric Simple Exclusion Process (Q-SSEP), a microscopic model system of fluctuating quantum diffusion. I will in particular present the recent observation that fluctuations of coherences in Q-SSEP have a natural interpretation as free cumulants, a concept from free probability theory, and heuristic arguments why we expect free probability theory to be an appropriate framework to describe coherent fluctuations in generic mesoscopic systems.

Information about the video

  • Date of publication 16/04/2024
  • Institution IHP
  • Language English
  • Format MP4

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback