The invariant subspace problem: a concrete operator theory approach
Appears in collection : Mathematical aspects of physics with non-self-adjoint operators / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints
The Invariant Subspace Problem for (separable) Hilbert spaces is a long-standing open question that traces back to Jonhn Von Neumann's works in the fifties asking, in particular, if every bounded linear operator acting on an infinite dimensional separable Hilbert space has a non-trivial closed invariant subspace. Whereas there are well-known classes of bounded linear operators on Hilbert spaces that are known to have non-trivial, closed invariant subspaces (normal operators, compact operators, polynomially compact operators,...), the question of characterizing the lattice of the invariant subspaces of just a particular bounded linear operator is known to be extremely difficult and indeed, it may solve the Invariant Subspace Problem.
In this talk, we will focus on those concrete operators that may solve the Invariant Subspace Problem, presenting some of their main properties, exhibiting old and new examples and recent results about them obtained in collaboration with Prof. Carl Cowen (Indiana University-Purdue University).