00:00:00 / 00:00:00

Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations

By Mikael de la Salle

Appears in collection : Chaire Jean Morlet - Conference - Algebraic aspects of random matrices / Chaire Jean Morlet - Conference - Aspects algébriques des matrices aléatoires

I will present a recent amazing new approach to norm convergence of random matrices due to Chen, Garza Vargas, Tropp, and van Handel, and the way Michael Magee and I apply and expand it, together with fine topological expansion, to obtain norm convergence for random matrix models coming from representations of SU(n) of quasi-exponential dimension.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20255203
  • Cite this video de la Salle, Mikael (10/10/2024). Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20255203
  • URL https://dx.doi.org/10.24350/CIRM.V.20255203

Bibliography

  • MAGEE, Michael et DE LA SALLE, Mikael. Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations. arXiv preprint arXiv:2409.03626, 2024. - https://doi.org/10.48550/arXiv.2409.03626

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback