00:00:00 / 00:00:00

Stochastic variational inequalities for random mechanics

By Laurent Mertz

Appears in collection : CEMRACS - Summer school: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS - École d'été : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen

The mathematical framework of variational inequalities is a powerful tool to model problems arising in mechanics such as elasto-plasticity where the physical laws change when some state variables reach a certain threshold [1]. Somehow, it is not surprising that the models used in the literature for the hysteresis effect of non-linear elasto-plastic oscillators submitted to random vibrations [2] are equivalent to (finite dimensional) stochastic variational inequalities (SVIs) [3]. This presentation concerns (a) cycle properties of a SVI modeling an elasto-perfectly-plastic oscillator excited by a white noise together with an application to the risk of failure [4,5]. (b) a set of Backward Kolmogorov equations for computing means, moments and correlation [6]. (c) free boundary value problems and HJB equations for the control of SVIs. For engineering applications, it is related to the problem of critical excitation [7]. This point concerns what we are doing during the CEMRACS research project. (d) (if time permits) on-going research on the modeling of a moving plate on turbulent convection [8]. This is a mixture of joint works and / or discussions with, amongst others, A. Bensoussan, L. Borsoi, C. Feau, M. Huang, M. Laurière, G. Stadler, J. Wylie, J. Zhang and J.Q. Zhong.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19217703
  • Cite this video Mertz, Laurent (16/08/2017). Stochastic variational inequalities for random mechanics. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19217703
  • URL https://dx.doi.org/10.24350/CIRM.V.19217703

Bibliography

  • [1] Duvaut, G., & Lions, J.L. (1976). Inequalities in mechanics and physics. Berlin: Springer-Verlag - http://dx.doi.org/10.1007/978-3-642-66165-5
  • [2] Karnopp, D., & Scharton, T.D. (1966). Plastic deformation in random vibration. The journal of the Acoustical society of America, 39(6), 1154-1161 - http://dx.doi.org/10.1121/1.1910005
  • [3] Bensoussan, A., & Turi, J. (2008). Degenerate Dirichlet problems related to the invariant measure of elasto-plastic oscillators. Applied Mathematics and Optimization, 58(1), 1-27 - https://doi.org/10.1007/s00245-007-9027-4
  • [4] Bensoussan, A., Mertz, L., & Yam, S.C.P. (2012). Long cycle behavior of the plastic deformation of an elasto-perfectly-plastic oscillator with noise. Comptes Rendus. Mathématique. Académie des Sciences, Paris, 350(17-18), 853-859 - http://dx.doi.org/10.1016/j.crma.2012.09.020
  • [5] Feau, C., Lauriere, M., & Mertz, L. (2017). Asymptotic formulae for the risk of failure related to an elasto- plastic problem with noise. To appear in Asymptotic Analysis
  • [6] Mertz, L., Stadler, G., & Wylie, J. (2017). A backward Kolmogorov equation approach to compute means, moments and correlations of path-dependent stochastic dynamical systems. <arXiv:1704.02170> - https://arxiv.org/abs/1704.02170v1
  • [7] Takewaki, I., Moustafa, A., & Kohei, F. (2013). Improving the Earthquake Resilience of Buildings. Berlin: Springer-Verlag - https://doi.org/10.1007/978-1-4471-4144-0
  • [8] Zhong, J.Q, & Zhang, J. (2007). Modeling the dynamics of a free boundary on turbulent thermal convection. Physical Review E, 76, 016307 - http://dx.doi.org/10.1103/physreve.76.016307

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback