00:00:00 / 00:00:00

Sobolev spaces on metric spaces

By Jun Kigami

Appears in collection : Analysis on fractals and networks, and applications / Analyse sur les fractals et les réseaux, et applications

Traditionally, theories of “Sobolev” spaces on metric spaces have used local Lipschitz constants as a substitute for the gradient of functions. However, a recent study by Kajino and Murugan revealed that such an idea does not work for a class of self-similar sets including the planar Sierpinski carpet. The notion of conductive homogeneity was proposed to construct a counterpart of Sobolev spaces and Sobolev p-energy even for such cases. In this talk, I will review the method of construction of Sobolev spaces under the conductive homogeneity and give a class of regular polygon-based self-similar sets having the conductive homogeneity. Our condition is the local symmetry of the space with some (or no) global symmetry. In particular, we show that any locally symmetric triangle-based self-similar sets possess the conductive homogeneity. This is joint work with Y. Ota.

Information about the video

Citation data



Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback