

Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 1
By Barbara Schapira


Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 2
By Barbara Schapira
Appears in collection : Nonlinear Waves Trimester - May Conference
There are many tools available when studying 2D Ricci flow, equivalently the logarithmic fast diffusion equation, but one has always been missing: how do you get uniform smoothing estimates in terms of local L^1 data, i.e. in terms of local bounds on the area. The problem is that the direct analogue of the geometrically less-useful L^p smoothing estimates for p bigger than 1 are simply false. In this talk I will explain this problem in more detail, and show how to get around it with a new local decay estimate. I also plan to sketch the proof and/or give some applications. No knowledge of Ricci flow will be assumed