

Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 1
By Barbara Schapira


Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 2
By Barbara Schapira
Appears in collections : Dynamique au-delà de l’hyperbolicité uniforme / Dynamics Beyond Uniform Hyperbolicity, Dynamique au-delà de l'hyperbolicité uniforme / Dynamics Beyond Uniform Hyperbolicity
A dynamical system is called rigid if a weak form of equivalence with a nearby system, such as coincidence of some simple invariants, implies a strong form of equivalence. In this minicourse we will discuss smooth rigidity of hyperbolic dynamical systems and related geometric questions such as marked length spectrum rigidity of negatively curved manifolds. We will consider the following moduli: lengths of periodic orbits, spectra of Poincar\'e return maps of the periodic orbits, volume Lyapunov exponents. After a brief overview of some classical results we will focus on recent developments in rigidity of Anosov and partially hyperbolic systems as well as connections to geometric rigidity. The latter is based on joint work with B. Kalinin and V. Sadovskaya and with F. Rodriguez Hertz.