00:00:00 / 00:00:00

Appears in collection : MathFlows

The patch solutions of the 2D Euler and (modified) SQG equations have form $\omega(x, t)=\chi_{\Omega(t)}(x)$ of a characteristic function of a domain $\Omega(t)$ evolving in time according to the Biot-Savart law $u=\nabla^{\perp}(-\Delta)^{-1+\alpha} \omega$, here $\alpha=0$ corresponds to the Euler case and $0<\alpha<1$ to the modified SQG family. For the Euler case, the first proof of global regularity for pathes was given by Chemin in Hölder spaces $C^{k, \beta}, 0<\beta<1$. For the modified SQG family, the problem remains largely open - with the only finite time singularity formation result available in the presence of boundary and for small $\alpha[5,2]$. I will discuss some recent conditional results on the possible scenarios for finite time blow up. Also, for the Euler patch case, I will describe a construction of patches that are $C^{2}$ at the initial and all integer times, but lack this regularity for all other times - without being time periodic. This result is based on the analysis of the curvature evolution equation, which may also be useful for other applications.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19984603
  • Cite this video Kiselev, Alexander (05/12/2022). Regularity of vortex and SQG patches. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19984603
  • URL https://dx.doi.org/10.24350/CIRM.V.19984603

Domain(s)

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback