00:00:00 / 00:00:00

Quantum Periods for Complements

By Maxim Kontsevich

Appears in collection : Physical Mathematics : Celebration of Albert Schwarz’s 70 Years in Science

A polynomial P in two variables defines a one-parameter family of spectral curves which are level sets of P, and the corresponding variation of Hodge structures on 1st cohomology groups of these curves. What happens if one quantizes the algebra of polynomials, i.e. deforms it to the Weyl algebra? I'll explain an approach based on second cohomology of complements to the level sets. In particular, one obtains a cohomological description of WKB series for Bohr-Sommefeld quantization rules. This is joint work with A.Soibelman.

Information about the video

  • Date of recording 14/06/2024
  • Date of publication 17/06/2024
  • Institution IHES
  • Language English
  • Audience Researchers
  • Format MP4


Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback