00:00:00 / 00:00:00

(joint work with Assaf Naor) The Heisenberg group $\mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $\mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of differentiation that they used to show that it does not embed nicely into $L_1$. This notion is based on surfaces in $\mathbb{H}$, and in this talk, we will describe new techniques that let us quantify the "roughness" of such surfaces, find sharp bounds on the distortion of embeddings of $\mathbb{H}$, and estimate the accuracy of an approximate algorithm for the Sparsest Cut Problem.

Information about the video

  • Date of recording 01/07/2016
  • Date of publication 04/02/2026
  • Institution Institut Fourier
  • Language English
  • Format MP4

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback