Quantitative De Giorgi methods in kinetic theory
Appears in collection : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
We consider hypoelliptic equations of kinetic Fokker-Planck type, also sometimes called of Kolmogorov or Langevin type, with rough coefficients in the drift-diffusion operator in velocity. We present novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities (which imply Hölder continuity with quantitative estimates). This is a joint work with Jessica Guerand.