Proper affine deformations of positive representations

By Neza Zager Korenjak

For every positive Anosov representation of a free group into $\mathrm{SO}(2n,2n-1)$, we define a family of cocycles giving rise to proper affine actions with the given linear part on $4n-1$--dimensional real affine space. Furthermore, we use higher-dimensional versions of Drumm's crooked planes to construct fundamental domains for these actions. This is joint work with Jean-Philippe Burelle.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback