Statistics meets tensors: methods, theory, and applications
By Anru Zhang
Local decay and asymptotic profile for the damped wave equation in the asymptotically Euclidean setting
By Rayan Fahs
By Wolfgang Arendt, Azam Jahandideh, Vincenzo Leone, Henning Heister, Manuel Schlierf, Sofian Abahmami
Appears in collection : Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques
Given $T>0$ and Hilbert spaces $V$ and $H$ where $V \hookrightarrow H$, a mapping $a:[0, T] \times V \times V \rightarrow \mathbb{K}$ is called non-autonomous form if $a(\cdot, v, w):[0, T] \rightarrow \mathbb{K}$ is measurable for all $v, w \in V$ and$$|a(t, v, w)| \leq M|v|_{V}|w|_{V} \quad \text { for all } t \in[0, T] \text { and } v, w \in V$$for some $M \geq 0$. The form is said to be coercive if there exists $\alpha>0$ with$$\operatorname{Re} a(t, v, v) \geq \alpha|v|_{V}^{2} \quad \text { for all } t \in[0, T] \text { and } v \in V$$An elegant result of Lions shows well-posedness of the problem$$\begin{cases}u^{\prime}(t)+\mathscr{A}(t) u(t) & =f(t) \tag{P}\\ u(0) & =u_{0}\end{cases}$$where $f \in L^{2}\left(0, T ; V^{\prime}\right)$ and $u_0 \in H$. Here, we consider the usual embedding $H \hookrightarrow V^{\prime}$ and the family of operators $\mathscr{A}(t) \in$ $\mathscr{L}\left(V, V^{\prime}\right)$ given by$$\langle\mathscr{A}(t) u, v\rangle=a(t, u, v) \quad \text { for all } t \in[0, T] \text { and } v, w \in V .$$In fact, one has maximal regularity in $V^{\prime}$, i.e.$$u \in H^1\left(0, T ; V^{\prime}\right) \cap L^2(0, T ; V) .$$Particularly, all the terms $u^{\prime}, \mathscr{A}(\cdot) u(\cdot)$ and $f$ belong to $L^{2}\left(0, T ; V^{\prime}\right)$. Frequently however, the part $A(t)$ of $\mathscr{A}(t)$ in $H$ given by$$D(A(t))=\{v \in V: \mathscr{A}(t) v \in H}, \quad A(t) v=\mathscr{A}(t) v$$is more important because this operator incorporates the boundary conditions. Thus, an important problem is the following Lions' Problem (1961). If $f \in L^{2}(0, T ; H)$ and $u_{0} \in V$, does this imply $u \in H^{1}(0, T ; H)$ ? The answer is "No", even if $u_{0}=0$. A first counterexample has been given by Dominik Dier (2014). It is based on the counterexample of McIntosh showing that $V \neq D\left(A^{\frac{1}{2}}\right)$ is possible. On the other hand, if the form $a$ is sufficiently regular in time, then positive results hold by results of D. Dier, S. Fackler, E.M. Ouhabaz, C. Spina and others.
Organization of the project: The project is organized in the following parts.
Consider the Gelfand triple $V \hookrightarrow H \hookrightarrow V^{\prime}$ and let $\mathscr{A}: V \rightarrow V^{\prime}$ be the operator associated to an autonomous, coercive form $a$ on $V$ and let $A$ be the part of $\mathscr{A}$ in $H$. Moreover, denote by $(T(t))_{t}$ the contractive, holomorphic $C_{0}$-semigroup on $H$ generated by $-A$, cf. [AVV19, Theorem 5.8]. The goal is then to prove that $$\begin{equation²} T(\cdot) x \in H^{1}(0, T ; H) \quad \text { if and only if } \quad x \in D\left(A^{\frac{1}{2}}\right) \tag{2.5} \end{equation²}$$ The main steps in the proof are outlined in [ADF17, Section 4]. One of the main ingredients and the main focus of this talk lies in understanding that $D\left(A^{\frac{1}{2}}\right)=[H, D(A)]_{\frac{1}{2}}$. That is, the domain of the square root is an interpolation space! The proof of this fact is a special case of [Haa06, Theorem 6.6.9].
Lions' theorem on maximal regularity in $V^{\prime}$, cf. [AVV19, Theorem 17.15] and the above introduction. A key argument in the proof involves Lions' representation theorem, cf. [AVV19, Theorem 17.11].
Dier's counterexample, cf. [ADF17, Example 5.1] and [Die14].
A positive result: maximal regularity in $H$ for Lipschitz continuous forms. More precisely, we suppose that the nonautonomous form $a:[0, \tau] \times V \times V \rightarrow \mathbb{K}$ can be written as $a=a_{1}+b$ where $a_{1}$ and $b$ are bounded non-autonomous forms on $V$ with the following requirements: (i) $a_{1}$ is symmetric, i.e. $a_{1}(t, x, y)=\overline{a_{1}(t, y, x)}$ for $x, y \in V$ and $0 \leq t \leq \tau$; (ii) $a_{1}$ is coercive, i.e. there exists $\alpha>0$ with $a_{1}(t, x, x) \geq \alpha|x|_{V}^{2}$ for all $x \in V, 0 \leq t \leq \tau$; (iii) $a_{1}$ is Lipschitz continuous, i.e. there exist $M_{1}^{\prime} \geq 0$ with $$\left|a_{1}(t, x, y)-a_{1}(s, x, y)\right| \leq M_{1}^{\prime}|t-x||x|_{V}|y|_{V}$$ for all $0 \leq t \leq \tau$ and all $x, y \in V$; (iv) There exists $M_{b} \geq 0$ with $|b(t, x, y)| \leq M_{b}|x|_{V}|y|_{H}$ for all $0 \leq t \leq \tau$ and $x, y \in V$. Then the statement of Lions' Problem as above holds true. For reference, cf. [ADLO14] and [AVV19, Theorem 18.2]. This talk's goal is giving a proof, possibly under somewhat stronger regularity assumptions on the form. For instance, if one even assumes $C^{1}$ regularity instead of Lipschitz regularity in time, then many technicalities become easier to handle.