

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
By Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
By Stanislav Smirnov
Appears in collection : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Concave and convex functions are basic functions in economy and finance. In derivatives market, options pay-offs as Call and Put are in general convex functions of their underlying $((x-K)^{+}, or (K-x)^{+})$ and their Black-Scholes Prices are also convex. This property can be maintain in a random universe, (without reference to finance). Here, we are looking for the pricing point of view. The data is an underlying random field, $\left\{X_{t}(x) \right}$, non negative with $X_{t}(0)=0$, $X_{t}(+\infty )=\infty$, and a pricing (strictly) convex function $\Phi (0,z)$ whose the right-derivative is denoted $\phi$, given the price today of convex European derivative. The problem is to characterize a convex pricing rule $\left\{\Phi (t,z) \right}$ in the future, optimal in the sense that $\left\{\Phi (t,X^{t}(x)) \right}$ is a martingale. Obviously, without additional constraint, the problem has many solutions. So, thanks to convexity assumptions, it is natural to introduce the convex conjugate random field $\Psi (t,y)$. By the Fenchel theory, the Gap function $G_{\Phi }(t,z,y)=\Phi (t,z)+\Psi (t,y)-zy\geq 0$, $= 0$ if $\phi (t,z)=y$.
Put $Y_{t}(\phi (z)):=\Phi _{z}(t,X_{t}(z))$. The problem is to solve a be revealed problem find a par of conjugate convex random fields $(\Phi (t,z), \Psi (t,y))$ such that $\Phi (t,X_{t}(x))$ and $\Psi (t,Y_{t}(y))$ are martingales. The Legendre formula implies that $X_{t}(z)Y_{t}(\phi (z))$ is a martingale. As for revealed utility, the problem at least a solution if and only if their exists an equivalent intrinsic framework, where necessary the processes ‘$\left\{X_{t}(x) \right},\left\{Y_{t}(y) \right},\left\{\Phi (t,z) \right}$' are supermartingales, and $\left\{X_{t}(x)Y_{t}(\phi (x)) \right}$ is a martingale. The family $\left\{Y_{t}(\phi (x)) \right}$ is a family of pricing kernel for $X_{t}(x)$. The relation $Y_{t}(\phi (z)):=\Phi _{z}(t,X_{t}(z))$, and the monotony of $X_{t}(z)$ gives the way to obtained $\Phi _{z}(t,z)=Y_{t}(\phi (X_{t}^{-1}(z)))$ by a pathwise procedure. The convexity of the pricing kernel reduced the arbitrage problems. Itô's semimartingale framework is used to illustrate this characterization. The revealed pricing kernel y is solution of a non-linear SPDE. Many properties can be deduced of this pathwise construction. Joint work Mohamed Mrad.