On high-dimensional Lévy-driven Ornstein-Uhlenbeck processes

By Claudia Strauch

Appears in collection : 2022 - T3 - WS1 - Non-linear and high dimensional inference

We investigate the problem of estimating the drift parameter of a high-dimensional Lévy-driven Ornstein–Uhlenbeck process under sparsity constraints. It is shown that both Lasso and Slope estimators achieve the minimax optimal rate of convergence (up to numerical constants), for tuning parameters chosen independently of the confidence level. The results are non-asymptotic and hold both in probability and conditional expectation with respect to an event resembling the restricted eigenvalue condition. (Based on joint work with Niklas Dexheimer)

Information about the video

  • Date of publication 05/04/2024
  • Institution IHP
  • Language English
  • Format MP4

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback