00:00:00 / 00:00:00

On Global Dynamics of 3-D Irrotational Compressible Fluids

By Qian Wang

Appears in collection : Partial Differential Equations, Analysis and Geometry

We consider global-in-time evolution of irrotational, isentropic, compressible Euler flow in 3-D. We study a broad class of smooth Cauchy data, prescribed on an annulus and surrounded by a non-vacuum constant exterior state, without symmetry assumptions. By imposing a sufficient expansion condition on the initial data and using the nonlinear structure of the Euler equations, we show that the first-order transversal derivative of the normalized density decays as ⟨t⟩⁻¹ (log⟨t⟩ + 1)⁻¹, provided that the perturbation arising from the tangential derivatives can be properly controlled for all t by using a bootstrap argument. This enables us to construct global exterior solutions, including a rather general subclass forming rarefaction at null infinity. Our result applies to data with a total energy of any size, as it does not require smallness of the transversal derivatives of smooth data.

Information about the video

  • Date of recording 15/01/2026
  • Date of publication 19/01/2026
  • Institution IHES
  • Language English
  • Audience Researchers
  • Format MP4

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback