

The Rayleigh-Bénard problem for compressible fluid flows
By Agnieszka Swierczewska-Gwiazda


Boundary vorticity estimate for the Navier-Stokes equation and control of the layer separation in the inviscid limit
By Alexis Vasseur
Appears in collection : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
The aim of this talk is the rigorous derivation of crossdiffusion systems from stochastic, moderately interacting many-particle systems for multiple species. Applications include animal populations and neuronal ensembles. The mean-field limit leads to nonlocal cross-diffusion systems, while the limit of vanishing interaction radius gives local cross-diffusion equations. This allows for the derivation of fluid-type models that can be found in neuronal networks and of Shigesada-Kawasaki-Teramoto population models. The derivation uses the techniques of Oehlschläger. The entropy structure of the limiting models is discussed and some numerical experiments are presented.