A $\lambda$-adic family of Funke-Millson cycles and a $\lambda$-adic Funke-Millson lift
By Paul Kiefer
Modularity of special cycles in orthogonal and unitary Shimura varieties
By Salim Tayou
By Bianca Viray
Appears in collection : Arithmetic, Geometry, Cryptography and Coding Theory / Arithmétique, géométrie, cryptographie et théorie des codes
Faltings’s theorem on rational points on subvarieties of abelian varieties can be used to show that al but finitely many algebraic points on a curve arise in families parametrized by $\mathbb{P}^{1}$ or positive rank abelian varieties, we call these finitely many exceptions isolated points. We study how isolated points behave under morphisms and then specialize to the case of modular curves. We show that isolated points on $X_{1}(n)$ push down to isolated points on aj only on the $j$-invariant of the isolated point. This is joint work with A. Bourdon, O. Ejder, Y. Liu, and F. Odumodu.