Higher operations from algebra and geometry

By Ralph Kaufmann

Appears in collection : 2023 - T2 - WS1 - GAP XVIII: Homotopy algebras and Higher Structures

Higher operations appear in the context of up to homotopy equations. For instance the pre-Lie product is a homotopy for the commutator. Such higher operations are often associated with a graphical or geometric calculus. In new work with Rivera and Wang, we find a natural Poisson double bracket as such a homotopy, which is a member of a series of even higher brackets. Interestingly the odd brackets vanish in a directed setting, but can be defined in an undirected setting. The double bracket yields a homotopy for a four term relation involving a product, a coproduct and their opposites. It dualizes to an $m_3$ multiplicaton which is part of an $A_∞$ structure with all $m_i > 4$ vanishing. Such structures were also studied in a different context by N. Iyudu, M. Kontsevich, and Y. Vlassopoulos.

Information about the video


Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback