Geometry of hyperconvex representations of surface groups

By Gabriele Viaggi

Appears in collection : 2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

A quasi-Fuchsian representation of a surface group in $\mathrm{PSL}(2,\mathbb C)$ is a discrete and faithful representation that preserves a Jordan curve on the Riemann sphere. These classical objects have a very rich structure as they lie at the crossroad of several areas of mathematics such as complex dynamics, Teichmüller theory, and 3-dimensional hyperbolic geometry. The invariant Jordan curve, which is typically a very fractal circle, captures the complexity of the representation and key dynamical and geometric features. In groundbreaking work, Bowen showed that the Hausdorff dimension of such a curve is always strictly greater than 1 except when it is a round circle and the representation factors through a copy of $\mathrm{PSL}(2,\mathbb R)$. In this talk, I will describe how this phenomenon persists for hyperconvex representations of surface groups in $\mathrm{PSL}(2,\mathbb C)$ a much larger class of representations that shares many striking similarities with quasi-Fuchsian ones. This is joint work with Beatrice Pozzetti and James Farre.

Information about the video

Domain(s)

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback