00:00:00 / 00:00:00

Appears in collection : Representations, Probability, and Beyond : A Journey into Anatoly Vershik’s World

Random dimer coverings of large planar graphs are known to exhibit unusual and visually apparent asymptotic phenomena that include formation of frozen regions and various phases in the unfrozen ones. For a specific family of subgraphs of the (periodically weighted) square lattice known as the Aztec diamonds, the asymptotic behavior of dimers admits a precise description in terms of geometry of underlying Riemann surfaces. The goal of the talk is to explain how the surface structure manifests itself through the statistics of dimers. Based on joint works with T. Berggren and M. Duits.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback