

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
By Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
By Stanislav Smirnov
Appears in collection : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
We consider the problem of controlling the diffusion coefficient of a diffusion with constant negative drift rate such that the probability of hitting a given lower barrier up to some finite time horizon is minimized. We assume that the diffusion rate can be chosen in a progressively measurable way with values in the interval [0,1]. We prove that the value function is regular, concave in the space variable, and that it solves the associated HJB equation. To do so, we show that the heat equation on a right triangle, with a boundary condition that is discontinuous in the corner, possesses a smooth solution. Work in Collaboration with Stefan Ankirchner, Nabil Kazi-Tani, Chao Zhou.