

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
By Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
By Stanislav Smirnov
Appears in collection : Recent models in random media / Modèles récents en milieu aléatoire
The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other properties of the point process. In particular, such freezing occurs for the extremal process in branching random walks and in certain versions of the (discrete) two dimensional GFF. Joint work with Eliran Subag