Flexibility and degeneracy around a theorem of Thurston

By Alex Nolte

We will present a pair of flexible and degenerate constructions of objects related to Thurston’s Lipschitz metric on Teichmüller space. In particular, we will explain how to construct sums of Fuchsian representations of surface groups whose limit cones are polyhedra and how to construct irregular geodesics for Thurston’s Lipschitz metric on Teichmüller space. Both constructions are “as degenerate as possible” in appropriate senses. We will emphasize the close relationship of these constructions with a counterintuitive theorem of Thurston on the generic simplicity and stability of solutions to a length-ratio optimization problem on hyperbolic surfaces.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback