Appears in collection : Interacting particle systems and related fields / Systèmes de particules en interaction et domaines connexes
The capacity of a set is a classical notion in potential theory and it is a measure of the size of a set as seen by a random walk or Brownian motion. Recently Zhu defined the notion of branching capacity as the analogue of capacity in the context of a branching random walk. In this talk I will describe joint work with Amine Asselah and Bruno Schapira where we introduce a notion of capacity of a set for critical bond percolation and I will explain how it shares similar properties as in the case of branching random walks.