Appears in collection : Number theory and applications / Théorie des nombres et applications
Rational points on smooth projective curves of genus $g \ge 2$ over number fields are in finite number thanks to a theorem of Faltings from 1983. The same result was known over function fields of positive characteristic since 1966 thanks to a theorem of Samuel. The aim of the talk is to give a bound as uniform as possible on this number for curves defined over such fields. In a first part we will report on a result by Rémond concerning the number field case and on a way to strengthen it assuming a height conjecture. During the second part we will focus on function fields of positive characteristic and describe a new result obtained in a joined work with Pacheco.