00:00:00 / 00:00:00

Bayesian inference and mathematical imaging - Part 3: probability and convex optimisation

By Marcelo Pereyra

Appears in collections : IHP winter school: The mathematics of imaging / Ecole d'hiver IHP : Les mathématiques de l'image, Ecoles de recherche

This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19486103
  • Cite this video Pereyra, Marcelo (10/01/2019). Bayesian inference and mathematical imaging - Part 3: probability and convex optimisation. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19486103
  • URL https://dx.doi.org/10.24350/CIRM.V.19486103

Bibliography

  • Ay, N., & Amari, S.-I. (2015). A novel approach to canonical divergences within information geometry. Entropy, 17(12), 8111-8129 - https://dx.doi.org/10.3390/e17127866
  • Cai, X., Pereyra, M., & McEwen, J.D. (2018). Uncertainty quantification for radio interferometric imaging: II. MAP estimation. Monthly Notices of the Royal Astronomical Society, 480(3), 4170-4182 - https://doi.org/10.1093/mnras/sty2015
  • Chambolle, A., & Pock, T. (2016). An introduction to continuous optimization for imaging. Acta Numerica, 25, 161-319 - https://doi.org/10.1017/S096249291600009X
  • Deledalle, C.-A., Vaiter, S., Fadili, J., & Peyré, G. (2014). Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection. SIAM Journal on Imaging Sciences, 7(4), 2448-2487 - https://doi.org/10.1137/140968045
  • Fernandez-Vidal, A. & Pereyra, M. (2018). Maximum likelihood estimation of regularisation parameters. In 2018 25th IEEE International Conference on Image Processing: Proceedings (pp. 1742-1746) - https://doi.org/10.1109/ICIP.2018.8451795
  • Green, P.J., Latuszynski, K., Pereyra, M., & Robert, C.P. (2015). Bayesian computation: a summary of the current state, and samples backwards and forwards. Statistics and Computing, 25(4), 835-862 - http://dx.doi.org/10.1007/s11222-015-9574-5
  • Pereyra, M. (2016). Maximum-a-posteriori estimation with bayesian confidence regions. SIAM Journal on Imaging Sciences, 10(1), 285–302 - https://doi.org/10.1137/16M1071249
  • Pereyra, M. (2016). Revisiting maximum-a-posteriori estimation in log-concave models: from differential geometry to decision theory. 〈arXiv:1612.06149〉 - https://arxiv.org/abs/1612.06149
  • Pereyra, M., Bioucas-Dias, J., & Figueiredo, M. (2015). Maximum-a-posteriori estimation with unknown regularisation parameters. In 2015 23rd European Signal Processing Conference (EUSIPCO): Proceedings (pp. 230-234) - https://doi.org/10.1109/EUSIPCO.2015.7362379
  • Repetti, A., Pereyra, M., & Wiaux, Y. (2018). Scalable Bayesian uncertainty quantification in imaging inverse problems via convex optimisation.〈arXiv:1803.00889〉 - https://arxiv.org/abs/1803.00889
  • Robert, C.P. (2001). The Bayesian Choice. From decision-theoretic foundations to computational implementation. 2nd ed., 1st paperback ed. New York, NY: Springer - http://dx.doi.org/10.1007/0-387-71599-1
  • Zhu, L., Zhang, W., Elnatan, D., & Huang, B. (2012). Faster STORM using compressed sensing. Nature Methods, 9(7), 721-723 - https://doi.org/10.1038/nmeth.1978

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback