Vorticity, Rotation and Symmetry (V) – Global Results and Nonlocal Phenomena / Vorticité, rotation et symétrie (V) – Résultats globaux et phénomènes non locaux

Collection Vorticity, Rotation and Symmetry (V) – Global Results and Nonlocal Phenomena / Vorticité, rotation et symétrie (V) – Résultats globaux et phénomènes non locaux

Organizer(s) Danchin, Raphaël ; Farwig, Reinhard ; Necasova, Sarka ; Neustupa, Jiri
Date(s) 26/10/2020 - 30/10/2020
linked URL https://conferences.cirm-math.fr/2166.html
00:00:00 / 00:00:00
4 4

Compressible Euler equations under a maximal density constraint

By Charlotte Perrin

In this talk, I will present recent results on solutions to a one-dimensional Euler system coupling compressible and incompressible phases. With this original fluid system we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, wave-structure interactions, collective motion, etc.). Here the compressible-incompressible model will be seen as the limit of a fully compressible Euler system endowed with a singular pressure law. The goal of the talk is to present theoretical results concerning this singular limit. This is a joint work with Roberta Bianchini.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19678803
  • Cite this video Perrin, Charlotte (27/10/2020). Compressible Euler equations under a maximal density constraint. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19678803
  • URL https://dx.doi.org/10.24350/CIRM.V.19678803

Domain(s)

Bibliography

  • BIANCHINI, Roberta et PERRIN, Charlotte. Soft congestion approximation to the one-dimensional constrained Euler equations. arXiv preprint arXiv:2005.13214, 2020. - https://arxiv.org/abs/2005.13214

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback