00:00:00 / 00:00:00
2 5

The power of heterogeneous large-scale data for high-dimensional causal inference

By Peter Bühlmann

We present a novel methodology for causal inference based on an invariance principle. It exploits the advantage of heterogeneity in larger datasets, arising from different experimental conditions (i.e. an aspect of "Big Data"). Despite fundamental identifiability issues, the method comes with statistical confidence statements leading to more reliable results than alternative procedures based on graphical modeling. We also discuss applications in biology, in particular for large-scale gene knock-down experiments in yeast where computational and statistical methods have an interesting potential for prediction and prioritization of new experimental interventions.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.18918403
  • Cite this video Bühlmann, Peter (03/02/2016). The power of heterogeneous large-scale data for high-dimensional causal inference. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18918403
  • URL https://dx.doi.org/10.24350/CIRM.V.18918403

Domain(s)

Bibliography

  • [1] Hauser, A., Bühlmann, P. (2015). Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs. Journal of the Royal Statistical Society, Series B, 77(1), 291-318 - http://dx.doi.org/10.1111/rssb.12071
  • [2] Hauser, A., & Buhlmann, P. (2012). Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning Research, 13(1), 2409-2464 - http://dl.acm.org/citation.cfm?id=2503308.2503320
  • [3] Kalisch, M., Machier, M., Colombo, D., Maathuis, M.H., & Buhlmann, P. (2012). Causal inference using graphical models with the R package pcalg. Journal of Statistical Software, 47(11), 1-26 - http://dx.doi.org/10.18637/jss.v047.i11
  • [4] Maathuis, M.H., Colombo, D., Kalisch, M. & Buhlmann, P (2010). Predicting causal effects in large-scale systems from observational data. Nature Methods, 7(4), 247-248 - http://dx.doi.org/10.1038/nmeth0410-247
  • [5] Maathuis, M.H., Kalisch, M., & Buhlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Annals of Statistics, 37(6A), 3133-3164 - http://dx.doi.org/10.1214/09-aos685
  • [6] Meinshausen, N., Hauser. A. Mooij, J., Peters, J., Versteeg, P. & Bühlmann, R. (2015). Causal inference from gene perturbation experiments: methods, software and validation. Preprint.
  • [7] Peters, J., Bühlmann, R, & Meinshausen, N. (2015). Causal inference using invariant prediction: identification and confidence intervals. <arXiv:1501.01332> - http://arxiv.org/abs/1501.01332v3
  • [8] Stekhoven, D.J., Morass, I., Sveinbjornsson, G., Hennig, L, Maathuis, M.H., & Buhlmann, P (2012). Causal stability ranking. Bioinformatics, 28(21), 2819-2823 - http://dx.doi.org/10.1093/bioinformatics/bts523

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback