Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques

Collection Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques

Organizer(s) Egert, Moritz ; Haller, Robert ; Monniaux, Sylvie ; Tolksdorf, Patrick
Date(s) 17/06/2024 - 21/06/2024
linked URL https://conferences.cirm-math.fr/2972.html
00:00:00 / 00:00:00
5 5

Project purple: $L^{p}$-extrapolation à la Blunck-Kunstmann

By Hendrik Vogt, Erik Heidrich, Charlotte Söder, Siguang Qi, Jonas Lenz

The aim of this project is a deeper investigation of off-diagonal estimates. In the ISem lectures, in Theorem 11.16, it has already been shown that off-diagonal estimates in combination with Sobolev embeddings lead to $L^{p}$-extrapolation for the resolvents of an elliptic operator $L$ in divergence form on $\mathbb{R}^{n}$. More precisely, if $\left|\frac{1}{p}-\frac{1}{2}\right|<\frac{1}{n}$, then there exists $C>0$ such that $\left|(1+t L)^{-1} u\right|_{p} \leqslant C|u|_{p}$ for all $t>0, u \in L^{p} \cap L^{2}\left(\mathbb{R}^{n}\right)$. A related (more difficult!) question is for what range of $p \in(1, \infty)$ the norm equivalence $|\sqrt{L} u|_{2} \simeq|\nabla u|_{2}$ from Theorem 12.1 (the Kato square root property for $L$ !) extrapolates to $L^{p}\left(\mathbb{R}^{n}\right)$. It turns out that there are different ranges of $p$ for the two estimates $|\sqrt{L} u|_{p} \lesssim|\nabla u|_{p}$ and $|\nabla u|_{p} \lesssim|\sqrt{L} u|_{p}$. The latter estimate is generally known as $L^{p}$-boundedness of the Riesz transform, and this is what shall be the core of the project. Starting point of the project is the AMS memoir [1], which starts with an excellent introduction into the topic; you can find a preprint version of the memoir on the arXiv (with different numbering of theorems than in the published version, unfortunately). An important abstract $L^{p}$-extrapolation result is Theorem 1.1 in [1], the application Riesz transforms on $L^{p}$ can be found in Section 4.1. This approach is due to Blunck and Kunstmann [2, 3]. If time permits, we can also study the approach of Shen [4] to Riesz transforms. The precise selection of topics will be decided among the participants of the project.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20191303
  • Cite this video Vogt, Hendrik; Heidrich, Erik; Söder, Charlotte; Qi, Siguang; Lenz, Jonas (20/06/2024). Project purple: $L^{p}$-extrapolation à la Blunck-Kunstmann. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20191303
  • URL https://dx.doi.org/10.24350/CIRM.V.20191303

Domain(s)

Bibliography

  • AUSCHER, Pascal. On necessary and sufficient conditions for $ L^ p $-estimates of Riesz transforms associated to elliptic operators on $\mathbb {R}^ n $ and related estimates. American Mathematical Soc., 2007. - http://arXiv.org/abs/math/0506032v2
  • BLUNCK, Sönke et KUNSTMANN, Peer Christian. Calderón-Zygmund theory for non-integral operators and the H^∞ functional calculus. 2003. - https://ems.press/content/serial-article-files/38074
  • BLUNCK, Sönke et KUNSTMANN, P. C. Weak type (p, p) estimates for Riesz transforms. Mathematische Zeitschrift, 2004, vol. 247, p. 137-148. - http://dx.doi.org/10.1007/s00209-003-0627-7
  • SHEN, Zhongwei. Bounds of Riesz transforms on $ L^ p $ spaces for second order elliptic operators. In : Annales de l'institut Fourier. 2005. p. 173-197. - https://doi.org/10.5802/aif.2094

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback