Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne

Collection Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne

Organizer(s) Borza, Samuel ; Chittaro, Francesca ; Rifford, Ludovic ; Sacchelli, Ludovic ; Stefani, Giorgio
Date(s) 25/11/2024 - 29/11/2024
linked URL https://conferences.cirm-math.fr/3091.html
00:00:00 / 00:00:00
2 5

We introduce the notion of submanifolds with boundary with intrinsic $C^{1}$ regularity in the setting of sub-Riemannian Heisenberg groups. We present a Stokes' Theorem for such submanifolds involving the integration of Heisenberg differential foms introduced by Rumin. This is a joint work with M. Di Marco, A. Julia and S. Nicolussi Golo.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20272703
  • Cite this video Vittone, Davide (25/11/2024). Stokes' theorem in Heisenberg groups. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20272703
  • URL https://dx.doi.org/10.24350/CIRM.V.20272703

Bibliography

  • DI MARCO, Marco, JULIA, Antoine, GOLO, Sebastiano Nicolussi, et al. Submanifolds with boundary and Stokes' Theorem in Heisenberg groups. arXiv preprint arXiv:2403.18675, 2024. - https://doi.org/10.48550/arXiv.2403.18675
  • FRANCHI, Bruno, SERAPIONI, Raul, et CASSANO, Francesco Serra. Regular submanifolds, graphs and area formula in Heisenberg groups. Advances in mathematics, 2007, vol. 211, no 1, p. 152-203. - https://doi.org/10.1016/j.aim.2006.07.015
  • FRANCHI, Bruno, TCHOU, Nicoletta, et TESI, Maria Carla. Div–curl type theorem, H-convergence and Stokes formula in the Heisenberg group. Communications in Contemporary Mathematics, 2006, vol. 8, no 01, p. 67-99. - http://doi.org/10.1142/S0219199706002039
  • FRANCHI, Bruno, SERAPIONI, Raul, et CASSANO, Francesco Serra. Regular submanifolds, graphs and area formula in Heisenberg groups. Advances in mathematics, 2007, vol. 211, no 1, p. 152-203. - https://doi.org/10.1016/j.aim.2006.07.015
  • RUMIN, Michel. Formes différentielles sur les variétés de contact. Journal of Differential Geometry, 1994, vol. 39, no 2, p. 281-330. - [http:// doi.org/10.4310/jdg/1214454873](http:// doi.org/10.4310/jdg/1214454873)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback