Etats de la recherche: Arithmetic, Algebraic and Analytics Dynamics / Etats de la recherche: Dynamique arithmétique, algébrique, et analytique

Collection Etats de la recherche: Arithmetic, Algebraic and Analytics Dynamics / Etats de la recherche: Dynamique arithmétique, algébrique, et analytique

Organizer(s) Favre, Charles ; Gauthier, Thomas ; Raissy, Jasmin
Date(s) 20/01/2025 - 24/01/2025
linked URL https://conferences.cirm-math.fr/3211.html
00:00:00 / 00:00:00
11 14

the group of tame automorphisms - Lecture 2

By Stéphane Lamy

The group of tame automorphisms. The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical degrees of their elements? The method to investigate these questions is via some actions on some metric spaces, namely the coset complex and the valuation complex, that we plan to introduce in detail. The lectures will focus on the following three cases: the group Aut($\mathbb{A}^{2}$) = Tame($\mathbb{A}^{2}$) following Chapter 7 of my book in preparation, then the group Tame($\mathbb{A}^{3}$) (Lamy, LamyPrzytycki, Blanc-Van Santen), and finally the group Tame(Q($\mathbb{A}^{4}$)) of tame automorphisms of $\mathbb{A}^{4}$ preserving a nondegenerate quadratic form (Bisi-Furter-Lamy, Martin, Dang).

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20290803
  • Cite this video Lamy, Stéphane (23/01/2025). the group of tame automorphisms - Lecture 2. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20290803
  • URL https://dx.doi.org/10.24350/CIRM.V.20290803

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback