Cite this video
Ratnani, Ahmed (14/08/2014). Towards complex and realistic tokamaks geometries in computational plasma physics.
CIRM.
Audiovisual resource. DOI: 10.24350/CIRM.V.18556703
Benamou, J.D., Froese, B. D. and Oberman, A. M. Two numerical methods for the elliptic monge-ampère equation. ESAIM : Mathematical Modelling and Numerical Analysis, vol. 44 (2010), no. 4, pp. 737-758 - http://dx.doi.org/10.1051/m2an/2010017
Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, vol. 44 (1991), no. 4, pp. 375-417 - http://dx.doi.org/10.1002/cpa.3160440402
Budd, C.J., Cullen, M.J.P. and Walsh, E.J. Monge-ampère based moving mesh methods for numerical weather prediction, with applications to the eady problem. Journal of Computational Physics, vol. 236 (2013), pp. 247-270 - http://dx.doi.org/10.1016/j.jcp.2012.11.014
Delzanno, G.L., Chacon, L., Finn, J.M., Chung, Y. and Lapenta, G. An optimal robust equidistribution method for two-dimensional grid adaptation based on monge-kantorovich optimization. Journal of Computational Physics, vol. 227 (2008), no. 23, pp. 9841-9864 - http://dx.doi.org/10.1016/j.jcp.2008.07.020
Fasshauer, G.E. and Schumaker, Larry L. Minimal energy surfaces using parametric splines. Computer Aided Geometric Design, vol. 13 (1996), no. 1, pp. 45-79 - http://dx.doi.org/10.1016/0167-8396(95)00006-2
Floater, M.S. and Hormann, K. Surface parameterization : a tutorial and survey. In Dodgson, N.A. (ed.) et al., Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Berlin, Springer, 2005, pp. 157-186. ISBN 3-540-21462-3 - http://dx.doi.org/10.1007/3-540-26808-1_9
Huang, W. and Russell, R.D. Adaptive moving mesh methods. Applied mathematical sciences, 174. New York, Springer, 2011. xvii, 432 p. ISBN 978-1-4419-7915-5 - http://dx.doi.org/10.1007/978-1-4419-7916-2