00:00:00 / 00:00:00

In the classical analogy between number fields and function fields, an Euclidean lattice (E,∥.∥) may be seen as the counterpart of a vector bundle V on a smooth projective curve C over some field k. Then the arithmetic counterpart of the dimension h0(C,V)=dimkΓ(C,V) of the space of sections of V is the non-negative real number h0θ(E,∥.∥):=log∑v∈Ee−π∥v∥2. In these lectures, I will firstly discuss diverse properties of the invariant h0θ and of its extensions to certain infinite dimensional generalizations of Euclidean lattices. Then I will present applications of this formalism to transcendence theory and to algebraization theorems in Diophantine geometry.

Informations sur la vidéo

  • Date de captation 12/06/2017
  • Date de publication 18/02/2026
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis