$A$ Infinity Functor in Symplectic Geometry and Gauge Theory
De Kenji Fukaya
An Update on SYZ Mirror Symmetry and Family Floer Theory
De Denis Auroux
De Basak Gurel
Apparaît dans la collection : From smooth to $C^{0}$ symplectic geometry: topological aspects and dynamical implications / Géométrie symplectique de lisse à $C^{0}$: aspects topologiques et implications dynamiques
The spectral norm is an important invariant of a Hamiltonian diffeomorphism and its properties have recently found numerous nontrivial applications to dynamics. We will explore the behavior of the spectral norm under iterations of a Hamiltonian diffeomorphism and some related phenomena. This feature is closely related to the existence of invariant sets (the Le Calvez–Yoccoz type theorems), Hamiltonian pseudo-rotations, rigidity and the strong closing lemma. The talk is based on joint work with Erman Çineli and Viktor Ginzburg.