00:00:00 / 00:00:00

The H-Principle and Turbulence

De László Székelyhidi Jr

Apparaît dans la collection : Vorticity, rotation and symmetry (III) - approaching limiting cases of fluid flows / Vorticité, rotation et symétrie (III) - analyse des situations limites en théorie des fluides

It is well known since the pioneering work of Scheffer and Shnirelman that weak solutions of the incompressible Euler equations exhibit a wild behaviour, which is very different from that of classical solutions. Nevertheless, weak solutions in three space dimensions have been studied in connection with a long-standing conjecture of Lars Onsager from 1949 concerning anomalous dissipation and, more generally, because of their possible relevance to the K41 theory of turbulence. In recent joint work with Camillo De Lellis we established a connection between the theory of weak solutions of the Euler equations and the Nash-Kuiper theorem on rough isometric immersions. Through this connection we interpret the wild behaviour of weak solutions of Euler as an instance of Gromov's h-principle. In this lecture we explain this connection and outline recent progress towards Onsager's conjecture.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19028203
  • Citer cette vidéo Székelyhidi, László (07/05/2014). The H-Principle and Turbulence. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19028203
  • URL https://dx.doi.org/10.24350/CIRM.V.19028203

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis