00:00:00 / 00:00:00

Representation varieties of fundamental groups of complex algebraic varieties and mixed Hodge structures

De Louis-Clément Lefèvre

We study locally the representation varieties of fundamental groups of smooth complex algebraic varieties. These are schemes whose complex points parametrize such representations into linear algebraic groups. At a given representation, the structure of the formal local ring to the representation variety tells about the obstructions to deform formally this representation, which is ultimately related to topological obstructions to the possible fundamental groups of complex algebraic varieties. This was first described by Goldman and Millson in the case of compact Kähler manifold, using formal deformation theory and differential graded Lie algebras. We review this using methods of Hodge theory and of derived deformation theory and we are able to describe locally the representation variety for non-compact smooth varieties and representations underlying a variation of Hodge structure.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19581103
  • Citer cette vidéo Lefèvre, Louis-Clément (28/11/2019). Representation varieties of fundamental groups of complex algebraic varieties and mixed Hodge structures. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19581103
  • URL https://dx.doi.org/10.24350/CIRM.V.19581103

Bibliographie

  • LEFÈVRE, Louis-Clément. Mixed Hodge structures and representations of fundamental groups of algebraic varieties. Advances in Mathematics, 2019, vol. 349, p. 869-910. - https://arxiv.org/abs/1806.02688
  • LEFÈVRE, Louis-Clément. Deformations of representations of fundamental groups of non-compact complex varieties. arXiv preprint arXiv: 1912.04787, 2019. - https://arxiv.org/abs/1912.04787

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis