00:00:00 / 00:00:00

Quadratic enumerative invariants and local contributions

De Sabrina Pauli

Apparaît dans la collection : Motivic homotopy in interaction / Homotopie motivique en interaction

Quadratic enumerative geometry extends classical enumerative geometry. In this enriched setting, the answers to enumerative questions are classes of quadratic forms and live in the Grothendieck-Witt ring GW(k) of quadratic forms. In the talk, we will compute some quadratic enumerative invariants (this can be done, for example, using Marc Levine's localization methods), for example, the quadratic count of lines on a smooth cubic surface. We will then study the geometric significance of this count: Each line on a smooth cubic surface contributes an element of GW(k) to the total quadratic count. We recall a geometric interpretation of this contribution by Kass-Wickelgren, which is intrinsic to the line and generalizes Segre's classification of real lines on a smooth cubic surface. Finally, we explain how to generalize this to lines of hypersurfaces of degree 2n − 1 in Pn+1. The latter is a joint work with Felipe Espreafico and Stephen McKean.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20259803
  • Citer cette vidéo Pauli, Sabrina (05/11/2024). Quadratic enumerative invariants and local contributions. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20259803
  • URL https://dx.doi.org/10.24350/CIRM.V.20259803

Bibliographie

  • KASS, Jesse Leo et WICKELGREN, Kirsten. An arithmetic count of the lines on a smooth cubic surface. Compositio Mathematica, 2021, vol. 157, no 4, p. 677-709. - https://doi.org/10.1112/S0010437X20007691
  • PAULI, Sabrina. Quadratic types and the dynamic Euler number of lines on a quintic threefold. Advances in Mathematics, 2022, vol. 405, p. 108508. - https://doi.org/10.1016/j.aim.2022.108508
  • FINASHIN, Sergey et KHARLAMOV, Viatcheslav. Segre indices and Welschinger weights as options for invariant count of real lines. International Mathematics Research Notices, 2021, vol. 2021, no 6, p. 4051-4078. - https://doi.org/10.1093/imrn/rnz208

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis