00:00:00 / 00:00:00

Proportionality and the arithmetic volumes of Shimura varieties and the moduli of Shtukas

De Wei Zhang

Apparaît dans la collection : Arithmetic and Diophantine Geometry, via Ergodic Theory and o-minimality

The volume of a locally symmetric space is essentially a product of special values of zeta functions. More generally, Hirzebruch's proportionality theorem (extended by Mumford) tells us how to integrate any Chern class polynomial on a locally symmetric space. We prove an analog and extension of these results to function fields, where locally symmetric spaces will be replaced by the moduli space of Drinfeld Shtukas with multiple legs, and special values of zeta functions will be replaced by a linear combination of their derivatives of various order. Over number fields, we formulate a conjecture and prove it in a couple of new cases, relating the arithmetic volume, defined by the Arakelov degree of certain Hermitian metrized line bundle, to the special values of derivatives of suitable Artin L-functions. This is joint work with Tony Feng and Zhiwei Yun.

Informations sur la vidéo

  • Date de captation 11/09/2025
  • Date de publication 17/09/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis