00:00:00 / 00:00:00

Nonnegative scalar curvature and area decreasing maps on complete foliated manifolds

De Guangxiang Su

Apparaît dans la collection : Not Only Scalar Curvature Seminar

Let $(M,g^{TM})$ be a noncompact complete Riemannian manifold of dimension $n$, and $F\subseteq TM$ be an integrable subbundle of $TM$. Let $g^F=g^{TM}|_{F}$ be the restricted metric on $F$ and $k^F$ be the associated leafwise scalar curvature. Let $f:M\to S^n(1)$ be a smooth area decreasing map along $F$, which is locally constant near infinity and of non-zero degree. We show that if $k^F> {\rm rk}(F)({\rm rk}(F)-1)$ on the support of ${\rm d}f$, and either $TM$ or $F$ is spin, then $\inf (k^F)<0$. As a consequence, we prove Gromov's sharp foliated $\otimes_\varepsilon$-twisting conjecture. Using the same method, we also extend two famous non-existence results due to Gromov and Lawson about $\Lambda^2$-enlargeable metrics (and/or manifolds) to the foliated case. This is a joint work with Xiangsheng Wang and Weiping Zhang.

Informations sur la vidéo

  • Date de captation 08/04/2022
  • Date de publication 21/04/2022
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis