Apparaît dans la collection : 2024 - T2 - Group actions and rigidity: around the Zimmer program

We survey recent results regarding dynamics of positive definite functions and character rigidity of higher rank lattices. We discuss the notion of noncommutative boundary structure and we give the proof of the noncommutative Nevo–Zimmer structure theorem for ergodic actions of higher rank lattices on von Neumann algebras due to Boutonnet–Houdayer. We present several applications to ergodic theory, topological dynamics, unitary representation theory and operator algebras. We also present a noncommutative analogue of Margulis' factor theorem for higher rank lattices and we explain its relevance towards Connes’ celebrated rigidity conjecture.

Watch part 1

Watch part 2

Watch part 3

Watch part 5

Informations sur la vidéo

Bibliographie

  • U. Bader, R. Boutonnet, C. Houdayer, J. Peterson, Charmenability of arithmetic groups of product type. Invent. Math. 229 (2022), 929–985.
  • R. Boutonnet, C. Houdayer, Stationary characters on lattices of semisimple Lie groups. Publ. Math. Inst. Hautes Etudes Sci. 133 (2021), 1–46.
  • R. Boutonnet, C. Houdayer, The noncommutative factor theorem for lattices in product groups. J. Ec. polytech. Math. 10 (2023), 513–524.

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis