

Effective bounds for polynomial systems defined over the rationals - lecture 2
De Teresa Krick


Effective bounds for polynomial systems defined over the rationals - lecture 1
De Teresa Krick
De Arthur Forey
Apparaît dans la collection : Logarithmic and non-archimedean methods in Singularity Theory - Thematic Month Week 1 / Méthodes logarithmiques et non-archimédiennes en théorie des singularités - Mois thématique semaine 1
These lectures will revolve around applications of Hrushovski and Kazhdan's theory of motivic integration. It associates motivic invariants to semi-algebraic sets in algebraically closed valued fields. Following the work of Hrushovski and Loeser, and in collaboration with Yin, we shall see that when applied to the non-archimedean Milnor fiber, the motivic volumes recover some classical invariants of the Milnor fiber. Finally, we will see how these methods can be applied to a singularity arising as the quotient of a smooth variety by a linear group. When the group is finite, the orbifold formula of Batyrev and Denef–Loeser provides a motivic version of the McKay correspondence. In collaboration with Loeser and Wyss, we establish a similar formula for a general linear group.