00:00:00 / 00:00:00

Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus

De Isabelle Chalendar

Apparaît dans la collection : Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques

Let $\mathrm{X}$ be a topological space of holomorphic functions on the open unit disc $D$. The study of the geometry of a space $X$ is centered on the identification of the linear isometries on $\mathrm{X}$, and there is an obvious connection between weighted composition operators and isometries. This connection can be traced back to Banach himself and emphasized by Forelli, El-Gebeily, Wolfe, Kolaski, Cima, Wogen, Colonna and many others. A characterisation is given of all the linear isometries of Hol($\Omega$), the Fr´ echet space of all holomorphic functions on $\Omega$ when $\Omega$ is the unit disc or an annulus, endowed with one of the standard metrics. Further, the larger class of operators isometric when restricted to one of the defining seminorms is identified. This is a joint work with Lucas Oger and Jonathan Partington.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20273303
  • Citer cette vidéo Chalendar, Isabelle (03/12/2024). Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20273303
  • URL https://dx.doi.org/10.24350/CIRM.V.20273303

Bibliographie

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries on the annulus: description and spectral properties. arXiv preprint arXiv:2409.16105, 2024. - https://doi.org/10.48550/arXiv.2409.16105
  • ARENDT, Wolfgang, BERNARD, Eddy, CELARIES, Benjamin, et al. Spectral properties of weighted composition operators on Hol(\mathbb{D}) induced by rotations, Indiana Univ. Math. J. 72 (2023), 1789-1820 - https://doi.org/10.1512/iumj.2023.72.9511
  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries of Hol (D). Journal of Mathematical Analysis and Applications, 2024, p. 128619. - https://doi.org/10.1016/j.jmaa.2024.128619
  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R., Linear and isometries on the annulus: description and spectral properties, submitted
  • EL-GEBEILY, Mohamad et WOLFE, John. Isometries of the disc algebra. Proceedings of the American Mathematical Society, 1985, vol. 93, no 4, p. 697-702. - https://doi.org/10.1090/S0002-9939-1985-0776205-9
  • FORELLI, Frank. The isometries of Hp. Canadian Journal of Mathematics, 1964, vol. 16, p. 721-728. - https://doi.org/10.4153/CJM-1964-068-3

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis