00:00:00 / 00:00:00

Extinction time for the weaker of two competing stochastic SIS logistic epidemics

De Malwina Luczak

Apparaît dans les collections : Dynamics on random graphs and random maps / Dynamiques sur graphes et cartes aléatoires, Mathematics of Epidemics, Exposés de recherche

We consider a simple stochastic model for the spread of a disease caused by two virus strains in a closed homogeneously mixing population of size N. In our model, the spread of each strain is described by the stochastic logistic SIS epidemic process in the absence of the other strain, and we assume that there is perfect cross-immunity between the two virus strains, that is, individuals infected by one strain are temporarily immune to re-infections and infections by the other strain. For the case where one strain has a strictly larger basic reproductive ratio than the other, and the stronger strain on its own is supercritical (that is, its basic reproductive ratio is larger than 1), we derive precise asymptotic results for the distribution of the time when the weaker strain disappears from the population, that is, its extinction time. We further consider what happens when the difference between the two reproductive ratios may tend to 0. This is joint work with Fabio Lopes.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19229703
  • Citer cette vidéo Luczak Malwina (24/10/2017). Extinction time for the weaker of two competing stochastic SIS logistic epidemics. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19229703
  • URL https://dx.doi.org/10.24350/CIRM.V.19229703

Domaine(s)

Bibliographie

  • Brightwell, G., House, T., & Luczak, M. (2017). Extinction times in the subcritical stochastic SIS logistic epidemic. <arXiv:1312.7449> - https://arxiv.org/abs/1312.7449

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis