La vidéo est momentanément indisponible, elle le sera très prochainement...
Dynamics and equilibrium states of infinite systems of lattics bosons
De
Andreas Deuchert
Apparaît dans la collection : Emergent phenomena in many-body quantum systems / Phénomènes émergents des systèmes quantiques a plusieurs corps
We consider the dynamics of systems of lattice bosons with infinitely many degrees of freedom. We show that their dynamics defines a group of automorphisms on a C∗–algebra introduced by Buchholz, which extends the resolvent algebra of local field operators. For states that admit uniform bounds on moments of the local particle number, we derive propagation bounds of Lieb–Robinson type. Using these bounds, we show that the dynamics of local observables gives rise to a strongly continuous unitary group in the GNS representation. Moreover, accumulation points of finite-volume Gibbs states satisfy the KMS condition with respect to this group. This, in particular, proves the existence of KMS states.
Joint work with Jonas Lampart and Marius Lemm.
Informations sur la vidéo
Données de citation
- DOI
10.24350/CIRM.V.20417603
- Citer cette vidéo
Deuchert, Andreas (11/12/2025). Dynamics and equilibrium states of infinite systems of lattics bosons.
CIRM.
Audiovisual resource. DOI: 10.24350/CIRM.V.20417603
- URL
https://dx.doi.org/10.24350/CIRM.V.20417603
Bibliographie
- DEUCHERT, Andreas, LAMPART, Jonas, et LEMM, Marius. Dynamics and equilibrium states of infinite systems of lattice bosons. arXiv preprint arXiv:2505.13170, 2025. - https://doi.org/10.48550/arXiv.2505.13170
Dernières questions liées sur MathOverflow
Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow