![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Cohomology of arithmetic groups, lattices and number theory: geometric and computational viewpoint / Cohomologie des groupes arithmétiques, réseaux et théorie des nombres: géométries et calculs
We will describe two projects. The first which is joint with Avner Ash and Paul Gunnells, concerns arithmetic subgroups $\Gamma$ of $G = SL_4(Z)$. We compute the cohomology of $\Gamma \setminus G/K$, focusing on the cuspidal degree $H^5$. We compute a range of Hecke operators on this cohomology. We fi Galois representations that appear to be attached to the Hecke eigenclasses, based on the operators we have computed. We have done this for both non-torsion and torsion classes. The second project, which is joint with Bob MacPherson, is an algorithm for computing the Hecke operators on the cohomology $H^d$ of $\Gamma$ in $SL_n(Z)$ for all $n$ and all $d$.