Apparaît dans la collection : Foliations, birational geometry and applications - Thematic Month Week 2 / Feuilletages, géométrie birationnelle et applications - Mois thématique semaine 2
The Minimal Model Program is a (partially conjectural) framework of the classification of algebraic varieties. In the early 2000s Brunella, Mendes and McQuillan observed that this framework could be adapted to the study of foliations on projective surfaces. In recent years this program of study has been developed for foliations on higher dimensional projective varieties. Our first lecture will review the Minimal Model Program for surface foliations. We will then survey the recent developments in the topic, focusing especially on three cases where the theory of minimal models of foliations is most developed, namely for rank one foliations, co-rank one foliations and algebraically integrable foliations. Time permitting we will explain a very recent development: adjoint foliated structures. These structures arise naturally as a way to address some of the unique challenges which arise when studying minimal model techniques in the setting of foliations.