00:00:00 / 00:00:00

A stable arithmetic regularity lemma in finite-dimensional vector spaces over fields of prime order

De Caroline Terry

Apparaît dans la collection : 2018 - T1 - WS1 - Model theory and combinatorics

In this talk we present a stable version of the arithmetic regularity lemma for vector spaces over fields of prime order. The arithmetic regularity lemma for F n p (first proved by Green in 2005) states that given A ⊆ F n p , there exists H ≤ F n p of bounded index such that A is Fourier-uniform with respect to almost all cosets of H. In general, the growth of the index of H is required to be of tower type depending on the degree of uniformity, and must also allow for a small number of non-uniform elements. Our main result is that, under a natural stability theoretic assumption, the bad bounds and non-uniform elements are not necessary. Specifically, we present an arithmetic regularity lemma for k-stable sets A ⊆ F n p , where the bound on the index of the subspace is only polynomial in the degree of uniformity, and where there are no non-uniform elements. This result is a natural extension to the arithmetic setting of the work on stable graph regularity lemmas initiated by Malliaris and Shelah. This is joint work with Julia Wolf.

Informations sur la vidéo

  • Date de captation 01/02/2018
  • Date de publication 02/02/2018
  • Institut IHP
  • Licence CC BY-NC-ND
  • Langue Anglais
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis