Apparaît dans la collection : ALEA Days 2025 / Journées ALEA 2025
Dans cet exposé, nous introduirons certaines chaînes de Markov simples, dites “montantes-descendantes”, sur les permutations et les graphes. Une étape de la chaîne consiste à dupliquer un élément aléatoire de la permutation ou un sommet aléatoire du graphe (pas montant), puis à supprimer un autre élément/sommet aléatoire (pas descendant). Nous prouvons que ces chaînes convergent dans la limite des grandes tailles et après renormalisation du temps vers une diffusion de Feller sur l'espace des permutons et des graphons, respectivement. Nous obtenons également une formule explicite pour la distance de séparation entre la distribution des chaînes après n pas, excluant l'apparition d'un phénomène de “cut-off”. Notre approche fonctionne dans un cadre plus général : il est basé sur des relations de commutation entre les opérateurs des pas montants et descendants, et s'inspire des travaux de Fulman, Olshanski et Borodin–Olshanski sur l'espace des partitions et le simplex de Thoma. Je ne supposerai aucune connaissance préalable des permutons, graphons, diffusions de Feller, distances de séparation, seuils, ... Travail joint (et encore en cours) avec Kelvin Rivera-Lopez, Gonzaga University.